This question paper contains 4 printed pages]

Roll No.	
----------	--

S. No. of Question Paper : 1161

Unique Paper Code : 237402

Name of the Paper : STHT-402; Probability and Statistical

Methods-IV

Name of the Course : B.Sc. (Hons.) Statistics

Semester : r

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, selecting two from Section I and three from Section II.

Section 1

- (a) Let X₁, X₂, ... X_{2n+1} be an odd-size random sample from a N(μ, σ²) population. Find the p.d.f. of the sample median and show that it is symmetric about μ, and hence has the mean μ.
 - (b) Let X_1 , X_2 , ..., X_n be a random sample with common p.d.f:

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the correlation coefficient between X₍₁₎ and X_(n). 8,7

2. (a) Let X_1 , X_2 X_n be a random sample from a N (μ , σ^2), find the p.d.f., mean and variance of :

$$S = \left(\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2\right)^{\frac{1}{2}}.$$

(b) For a χ^2 distribution with n d.f. establish the following recurrence relation between the moments:

$$\mu_{r+1} = 2r (\mu_r + n \mu_{r-1}), r \ge 1.$$

Hence find $\beta_1 \& \beta_2$

8,7

- 3. (a) Discuss the limiting form of χ^2 distribution for large degrees of freedom.
 - (b) If X_1 and X_2 are independently distributed each as χ^2 variate with 2 degrees of freedom then show that the probability density function of:

$$Y = \frac{1}{2}(X_1 - X_2)$$

is :

$$g(y) = \frac{1}{2}e^{-|y|}, \quad -\infty \leq y \leq \infty.$$

(c) Show by means of an example that there may exist a random variable X for which E(X) does not exist but $E(X_{(r)})$ exists for some r.

Section II

- 4. (a) Define the following terms:
 - (i) Null and alternative hypothesis
 - (ii) Critical region
 - (iii) Level of significance.
 - (b) Define sampling distribution and standard error of a statistic. Obtain the standard error of mean when population size is large.
 - (c) Let P_1 and P_2 be the (unknown) proportions of students wearing glasses in two universities A and B. To compare P_1 and P_2 , samples of sizes n_1 and n_2 are taken from the two populations and the number of students wearing glasses is found to be x_1 and x_2 respectively. Suggest an unbiased estimate of $(P_1 P_2)$ and obtain its sampling distribution when n_1 and n_2 are large. Hence explain h_0 to test the hypothesis that $P_1 = P_2$.
- S. (a) If \overline{X} and S^2 be the usual sample mean and sample variance based on a random sample of n observations P.T.O.

from N(μ , σ^2) and T = $(\overline{X} - \mu)\sqrt{n}/S$, where :

$$S^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X})^2$$

then prove that :

Covariance
$$(\bar{X}, T) = {\sigma \sqrt{(n-1)} \Gamma(n-2)/2} /$$

 $\sqrt{2n}\Gamma(n-1)/2$

- (b) Define Student's t statistic and obtain its p.d.f. Show that Student's t may be regarded as a particular case of Fisher's t statistic 8,7
- 6. (a) Show that for F-distribution with n_1 and n_2 d.f., the points of inflexion exist if $n_1 > 4$ and are equidistant from the mode.
 - (b) If $X \sim F_{(n,m)}$, then prove that $nX \sim \chi^2$ with n d.f., for large m. 8,7
- 7. Write short notes on any three of the following:
 - (i) Brandt and Snedecor formula for $2 \times k$ contingency table.
 - (ii) *t*-test for difference of means for independent samples.
 - (iii) Applications of F-distribution
 - (iv) Distribution of sample correlation coefficient when population correlation coefficient is zero. 5,5,5